본문 바로가기
Java/Algorithm

[JAVA] 알고리즘 학습 순서 정리

by 리요_ 2025. 5. 16.
반응형

 

JAVA 코딩테스트 알고리즘 학습 순서를 정리해 보았습니다.


⭐ JAVA 코딩 테스트 알고리즘 학습 순서 추천

💫 1단계 : 기초 다지기

🔹 JAVA 문법 및 핵심 라이브러리 숙지

JAVA 기본 문법

  • 변수
  • 조건문
  • 반복문
  • 함수
  • 입출력(Scanner, BufferedReader, BufferedWriter, System.out.println)
  • 기본 자료형
  • 배열
  • 문자열 처리(String, StringBuilder)
  • 컬렉션 프레임워크(List, Set, Map)

🔹 시간 복잡도 및 공간 복잡도 이해

알고리즘의 효율성을 평가하는 기준인 시간 복잡도(Time Complexity)공간 복잡도(Space Complexity)의 개념을 확실히 이해해야 합니다.

 

O(N), O(N^2), O(log N)  등의 표기법과 각 연산(배열 접근, 리스트 삽입/삭제, 맵 검색 등)의 복잡도를 알아야 효율적인 알고리즘을 선택하고 작성할 수 있습니다.

🔹기본 수학 개념

약수, 소수, 최대공약수/최대공배수, 진법 변환 등


💫 2단계 : 핵심 자료구조 학습 및 활용

알고리즘을 풀 때는 데이터를 어떻게 저장하고 관리하느냐가 중요합니다.

기본적인 자료구조의 개념, 구현 방법, 각 연산의 시간 복잡도를 이해하고 JAVA 컬렉션 프레임워크를 활용하여 문제에 적용하는 연습을 합니다.

  • 배열 (Array) : 1차원, 2차원 배열의 활용법을 익힙니다.
  • 리스트 (List - ArrayList, LinkedList) : 배열과 리스트의 차이점, 각각의 장단점 및 활용법을 익힙니다.
  • 연결 리스트 (LinkedList) : 개념 및 동작 방식 이해.(LinkedList 클래스 제공)
  •  스택 (Stack) : LIFO(Last-In, First-Out) 구조. (Stack 클래스, Deque 인터페이스 구현체 ArrayDeque, LinkedList 사용)
  • 큐 ( Queue) : FIFI(First-In, First-Out)구조. BFS 등에서 핵심적으로 사용 ( Queue 인터페이스의 구현체 LinkedList, ArrayDeque 사용)
  • 덱 (Deque) : 양방향에서 삽입/삭제가 가능한 구조. (Deque 인터페이스 구현체 Arrayque, LinkedList 사용)
  • 우선순위 큐 (Priority Queue): 우선순위가 높은 요소가 먼저 나오는 구조 ( PriorityQueue 클래스 사용)
  • 해시 테이블/멥 (Hash Table/Map - HashMap, HashSet) : 키-값 쌍을 빠르게 저장하고 검색하는 구조. 탐색, 삽입, 삭제가 평균 O(1) 입니다. (HashMap, HashSet 클래스 사용)
  • 트리 (Tree) 및 그래프 (Graph) 기본: 트리와 그래프의 개념, 종류(이진 트리, 이진 탐색 트리, 방향/무방향 그리프 등) 기본적인 표현 방법(인접 행렬, 인접 리스트) 를 이해합니다.

💫 3단계 :  주요 알고리즘 학습 및 연습

문제 해결에 직접적으로 사용되는 주요 알고리즘들을 학습하고 연습합니다.

각 알고리즘의 원리, 구현 방법, 시간 복잡도를 이해합니다.

  • 정렬(Sorting) : 다양한 정렬 알고리즘 (버블, 선택, 삽입, 병합, 퀵)의 원리를 이해하고 JAVA의 기본 정렬 메서드(Array.sort(), Collections.sort()) 사용법을 익힙니다. 필요한 경우 커스텀 정렬 기준을 정의할 수 있어야 합니다.
  • 탐색 (Searching) : 선형 탐색, 이진 탐색의 원리 및 구현 방법을 익힙니다. 이진 탐색은 정렬된 데이터에서 특정 값을 빠르게 찾을 때 매우 유용합니다.
  • DFS(깊이 우선 탐색) 와 BFS(너비 우선 탐색) : 그래프/트리 탐색의 기본입니다. 재귀 또는 스택(DFS), 큐(BFS)를 사용하여 구현하는 방법을 숙달합니다. 
  • 백트래킹(Backtracking): 해를 탐색하거나 가능성이 없으면 되돌아오는 기법입니다. DFS와 연관이 깊으며 순열조합, 부분집합, 특정 조건 만족 문제 등에서 활용됩니다.
  • 구현 (Implementation) : 특정 알고리즘보다는 문제에서 요구하는 절차나 조건을 그대로 코드로 옮기는 유형의 문제입니다. 시뮬레이션 문제 등이 포함됩니다.

💫 4단계 :  고급 알고리즘 및 기법

경쟁력 강화를 위해 더 어려운 문제를 해결하기 위한 고급 알고리즘 및 기법들을 학습합니다.

  • DP (동적 계획법): DP방법론을 다양한 문제에 적용하는 연습. 점화식 세우기, 메모이제이션/타뷸레이션 구현 연습
  • 그리디 알고리즘 (Greedy Algorithm): 각 단계에서 최적의 선택을 하여 최종적인 최적 해를 구하는 알고리즘. 항상 최적 해를 보장하는 것은 아니므로 적용 가능한 문제를 구분하는 능력이 필요합니다.
  • 최단 경로 알고리즘 : 다익스트라, 플로이드-위셜, 벨만-포드 등 그래프에서 최단 경로를 찾는 알고리즘을 학습합니다.
  • 최소 신장 트리(Minimum Spannibg Tree) : 크루스칼, 프림 알고리즘 등 그래프의 모든 노드를 연결하는 최소 비용 트리를 찾는 알고리즘들을 학습합니다.
  • 분할정복 (Divide and Conquer): 문제를 작은 문제로 분할하고 작은 문제들을 해결한 후 합쳐서 원래 문제의 해를 구하는 기법입니다.
  • 위상 정렬 (Topological Sort) : 방향 비순환 그래프(DAG)에서 노드들의 순서를 나열하는 알고리즘입니다.
  • 문자열 알고리즘 : KMP, Rabin-Karp 등 문자열 탐색 및 매칭 알고리즘입니다..
  • 기타 : 비트마스킹, 슬라이딩 윈도우, 투 포인터 등 문제 해결에 유용한 다양한 기법들이 있습니다.

반복적 문제 풀이 연습

알고리즘 개념 학습과 함께 꾸준히 문제를 푸는 연습을 병행합니다.

 

백준(BOJ), 프로그래머스, LeetCode, Codeforces 등 온라인 코딩 테스트 플랫폼에서 난이도별, 주제별 문제를 풀어볼 수 있습니다.

 

 

반응형